4 Commits

Author SHA1 Message Date
kellervater
de92bfc408 chore: defaults 2025-04-27 01:03:02 +02:00
kellervater
839ea944e9 feat: got it. Growing algorithm works finally 2025-04-27 01:00:17 +02:00
kellervater
ae9b343b40 feat(flexmount): single mounting bridge 2025-04-26 20:46:40 +02:00
kellervater
51aa349be5 feat: raw flexmount 2025-04-26 15:17:53 +02:00
3 changed files with 73 additions and 68 deletions

View File

@@ -0,0 +1,5 @@
Fully customizable mount to be used with HomeRacker.
It's intended for non-standard devices you want to mount on HomeRacker.
Non-standard being devices which aren't originally meant to be mounted in 10 or 19" racks.
Devices might be PSU's for Raspberry Pis or small smart switches like on these pictures:
<TODO: insert pics here>

View File

@@ -1,11 +1,10 @@
// import BOSL2
include <BOSL2/std.scad>
$fn=100;
/* [Hidden] */
// constants which shouldn't be changed
$fn=100;
// This is the HomeRacker base unit. don't change this!
BASE_UNIT=15; // mm
@@ -20,20 +19,23 @@ LOCK_PIN_SIDE=4; // mm
// lock pin edge distance
LOCK_PIN_EDGE_DISTANCE=5.5; // mm
/* [Base] */
// If set to true, the mount will be fitted to align with the 10/19 inch HomRacker rackmount kit.
//fit_to_rack=true;
/* [Device Measurements] */
// Width of the device in mm. Will determine how far apart the actual mounts are in width.
device_width=100 // [20:0.1:500]
; // TODO test for zero cube
// Depth of the device in mm. Will determine how far apart the actual mounts are in depth.
device_depth=99; // [54:0.1:400]
device_depth=99; // [54:0.1:500]
// Height of the device in mm. Will determine how far apart the actual mounts are in height.
device_height=25.5; // [10:0.1:400]
device_height=25.5; // [15:0.1:500]
/* [Bracket] */
// Defines the bracket thickness on top of the device.
bracket_strength_top=7.5; // [1:0.1:50]
// Defines how much the bracket will overlap to the sides of the device.
bracket_strength_sides=7.5; // [2:0.1:50]
bracket_strength_top=7.5; // [4:0.1:20]
bracket_strength_sides=7.5; // [4:0.1:20]
// diff_width resembles the gap between the device and the mount. This gap will be filled with a cuboid
modulo_width=(BASE_UNIT - ( device_width + TOLERANCE ) % BASE_UNIT);
@@ -56,10 +58,6 @@ module bracket(width,depth,height) {
outer_width=width+BASE_STRENGTH*2+TOLERANCE;
outer_depth=depth+BASE_STRENGTH*2+TOLERANCE;
outer_height=height+BASE_STRENGTH;
inner_width=width-bracket_strength_top*2+TOLERANCE;
inner_depth=depth-bracket_strength_top*2+TOLERANCE;
bottom_recess_height=height-bracket_strength_sides;
intersection(){
difference() {
// Outer
@@ -68,33 +66,36 @@ module bracket(width,depth,height) {
anchor=BOTTOM,
chamfer=CHAMFER, edges=[TOP,FRONT,BACK,LEFT,RIGHT], except=[BOTTOM]
);
// Top Skeleton (cut the middle to leave only a bracket to the sides)
// Top Skeleton
cuboid(
size=[inner_width,inner_depth,outer_height],
size=[width-bracket_strength_top,depth-bracket_strength_top,outer_height],
anchor=BOTTOM,
chamfer=-CHAMFER, edges=[TOP]
);
// Bottom Recess (cut the cube to leave only a top bracket)
// Bottom Recess
cuboid(
size=[outer_width,outer_depth,bottom_recess_height],
size=[outer_width,outer_depth,height-bracket_strength_sides],
anchor=BOTTOM
);
// Subtract Device to from bracket (cut the device into the bracket)
cuboid(
size=[width+TOLERANCE,depth+TOLERANCE,height+TOLERANCE/2],
anchor=BOTTOM
);
);
}
// chamfer intersection for the outer bottom chamfer of the bracket
translate([0,0,outer_height])
cuboid(
size=[outer_width,outer_depth,bracket_strength_sides+BASE_STRENGTH-TOLERANCE/2],
size=[outer_width,outer_depth,bracket_strength_sides],
anchor=TOP,
chamfer=CHAMFER, edges=[BOTTOM]
);
}
}
// device module adds TOLERANCE to the device size and creates a cuboid with the device size
// this is used to create the device in the mount and add TOLERANCE to the device size for spacing
module device(width,depth,height) {
// Device
cuboid(
size=[width+TOLERANCE,depth+TOLERANCE,height+TOLERANCE],
anchor=BOTTOM
);
}
// Mount
module mount(){
@@ -184,8 +185,12 @@ module mirror_mount_x_plane(){
// Assembly
rotate([180,0,0])
union() {
bracket(device_width,device_depth,device_height);
difference() {
bracket(device_width,device_depth,device_height);
device(device_width,device_depth,device_height);
}
// Mount Right
mirror_mount_x_plane();

View File

@@ -1,26 +1,13 @@
// import BOSL2
include <BOSL2/std.scad>
/* [Hidden] */
$fn=100;
CAGE_BOLT_DIAMETER=6.5;
RACK_BORE_DISTANCE_VERTICAL=15.875;
RACK_BORE_DISTANCE_TOP_BOTTOM=6.35;
RACK_MOUNT_SURFACE_WIDTH=15.875;
RACK_BORE_DISTANCE_HORIZONTAL=RACK_MOUNT_SURFACE_WIDTH/2;
RACK_HEIGHT_UNIT=44.5; // mm
RACK_WIDTH_10_INCH_INNER=222.25; // mm
RACK_WIDTH_10_INCH_OUTER=254; // mm
RACK_WIDTH_19_INCH=482.6; // mm
/* [Base] */
// automatically chooses the tightest fit for the rackmount ears based on the device width. If true, rack_size will be ignored.
autosize=true;
// rack size in inches. If autosize is true, this value will be ignored. Only 10 and 19 inch racks are supported.
rack_size=10; // [10:10 inch,19:19 inch]
// Asymetry Slider. If autosize is true, this value will be ignored. CAUTION: there's no sanity check for this slider!
asymetry=100; // [-150:0.1:150]
// Width of the device in mm. Will determine the width of the rackmount ears depending on rack_size.
device_width=201;
@@ -51,18 +38,44 @@ device_bore_rows=2;
// If true, the device will be aligned to the center of the rackmount ear. Otherwise it will be aligned to the bottom of the rackmount ear.
center_device_bore_alignment=false;
/* [Derived] */
/* [CONSTANTS (shouldn't need to be changed)] */
CAGE_BOLT_DIAMETER=6.5;
CHAMFER=min(strength/3,0.5);
RACK_BORE_DISTANCE_VERTICAL=15.875;
RACK_BORE_DISTANCE_TOP_BOTTOM=6.35;
RACK_MOUNT_SURFACE_WIDTH=15.875;
RACK_BORE_DISTANCE_HORIZONTAL=RACK_MOUNT_SURFACE_WIDTH/2;
RACK_BORE_WIDTH=RACK_MOUNT_SURFACE_WIDTH-2*max(strength,2);
RACK_HEIGHT_UNIT=44.5; // mm
RACK_HEIGHT_UNIT_COUNT=max(1,ceil(device_height/RACK_HEIGHT_UNIT));
RACK_HEIGHT=RACK_HEIGHT_UNIT_COUNT*RACK_HEIGHT_UNIT; // actual height calculated by height unit size x number of units
RACK_BORE_COUNT=RACK_HEIGHT_UNIT_COUNT*3; // 3 holes for each units
RACK_WIDTH_10_INCH_INNER=222.25; // mm
RACK_WIDTH_10_INCH_OUTER=254; // mm
RACK_WIDTH_19_INCH=482.6; // mm
// Base assertions
module validate_params() {
valid_rack_sizes=[10,19];
if(autosize == false){
assert(rack_size == 10 || rack_size == 19, "Invalid rack_size. Only 10 and 19 inch racks are supported. Choose a valid one or set autosize to true.");
}
}
validate_params();
// Debug
echo("Height: ", RACK_HEIGHT);
echo("Rack Bore Count: ", RACK_BORE_COUNT);
// Calculate the width of the ear
function get_ear_width(device_width) =
device_width > RACK_WIDTH_10_INCH_INNER || autosize == false && rack_size == 19 ?
(RACK_WIDTH_19_INCH - device_width) / 2 :
(RACK_WIDTH_10_INCH_OUTER - device_width) / 2
;
rack_ear_width = get_ear_width(device_width);
function get_bore_depth(device_bore_margin_horizontal,device_bore_columns) =
(device_bore_columns - 1) * device_bore_margin_horizontal
@@ -79,7 +92,7 @@ device_screw_alignment = [strength,depth/2,device_screw_alignment_vertical];
module base_ear(width,strength,height) {
union() {
// Front face
cuboid([width,strength,height],anchor=LEFT+BOTTOM+FRONT,chamfer=CHAMFER);
cuboid([rack_ear_width,strength,height],anchor=LEFT+BOTTOM+FRONT,chamfer=CHAMFER);
// Side face
cuboid([strength,depth,height],anchor=LEFT+BOTTOM+FRONT,chamfer=CHAMFER);
}
@@ -97,33 +110,15 @@ module screws_countersunk(length, diameter_head, length_head, diameter_shaft) {
// Assemble the rackmount ear
module rackmount_ear(asym=0){
ear_width_19_inch=(RACK_WIDTH_19_INCH - device_width) / 2 + asym;
ear_width_10_inch=(RACK_WIDTH_10_INCH_OUTER - device_width) / 2 + asym;
// Calculate the width of the ear
rack_ear_width = device_width > RACK_WIDTH_10_INCH_INNER || autosize == false && rack_size == 19 ?
ear_width_19_inch:
ear_width_10_inch
;
difference() {
difference() {
difference() {
// Create the base of the ear
base_ear(rack_ear_width,strength,RACK_HEIGHT);
// Create the holes for the device screws
screws_countersunk(length=strength,diameter_head=device_bore_hole_head_diameter,length_head=device_bore_hole_head_length,diameter_shaft=device_bore_hole_diameter);
}
// Create the holes for the rackmount screws
zcopies(spacing=RACK_HEIGHT_UNIT,n=RACK_HEIGHT_UNIT_COUNT,sp=[0,0,0])
zcopies(spacing=RACK_BORE_DISTANCE_VERTICAL,n=3,sp=[rack_ear_width-RACK_BORE_DISTANCE_HORIZONTAL,0,RACK_BORE_DISTANCE_TOP_BOTTOM])
cuboid([RACK_BORE_WIDTH,strength+1,CAGE_BOLT_DIAMETER], rounding=CAGE_BOLT_DIAMETER/2, edges=[TOP+LEFT,TOP+RIGHT,BOTTOM+LEFT,BOTTOM+RIGHT], anchor=FRONT);
// Create the base of the ear
base_ear(device_width,strength,RACK_HEIGHT);
// Create the holes for the device screws
screws_countersunk(length=strength,diameter_head=device_bore_hole_head_diameter,length_head=device_bore_hole_head_length,diameter_shaft=device_bore_hole_diameter);
}
}
// Place the ears
rackmount_ear(asymetry);
x_mirror_plane = [1,0,0];
translate([-device_width,0,0])
mirror(x_mirror_plane){
rackmount_ear(-asymetry);
// Create the holes for the rackmount screws
zcopies(spacing=RACK_HEIGHT_UNIT,n=RACK_HEIGHT_UNIT_COUNT,sp=[0,0,0])
zcopies(spacing=RACK_BORE_DISTANCE_VERTICAL,n=3,sp=[rack_ear_width-RACK_BORE_DISTANCE_HORIZONTAL,0,RACK_BORE_DISTANCE_TOP_BOTTOM])
cuboid([RACK_BORE_WIDTH,strength+1,CAGE_BOLT_DIAMETER], rounding=CAGE_BOLT_DIAMETER/2, edges=[TOP+LEFT,TOP+RIGHT,BOTTOM+LEFT,BOTTOM+RIGHT], anchor=FRONT);
}