ci: Add GitHub Actions workflow for publishing MCP package

This commit is contained in:
Marvin Zhang
2025-06-20 11:09:02 +08:00
parent 994adc3f71
commit 52b180aaa0
2 changed files with 126 additions and 609 deletions

126
.github/workflows/publish-mcp.yml vendored Normal file
View File

@@ -0,0 +1,126 @@
name: Publish MCP Package
on:
push:
branches: [main, develop]
paths:
- 'mcp/**'
pull_request:
branches: [main, develop]
paths:
- 'mcp/**'
release:
types: [created]
workflow_dispatch:
inputs:
publish_tag:
description: 'NPM tag to publish under (latest, dev, beta, alpha)'
required: false
default: 'dev'
type: choice
options:
- latest
- dev
- beta
- alpha
jobs:
publish:
runs-on: ubuntu-latest
defaults:
run:
working-directory: ./mcp
steps:
- name: Checkout repository
uses: actions/checkout@v4
- name: Setup Node.js
uses: actions/setup-node@v4
with:
node-version: '20'
registry-url: 'https://registry.npmjs.org'
- name: Setup pnpm
uses: pnpm/action-setup@v4
with:
version: '10.12.1'
- name: Get pnpm store directory
shell: bash
run: |
echo "STORE_PATH=$(pnpm store path --silent)" >> $GITHUB_ENV
- name: Setup pnpm cache
uses: actions/cache@v4
with:
path: ${{ env.STORE_PATH }}
key: ${{ runner.os }}-pnpm-store-${{ hashFiles('**/pnpm-lock.yaml') }}
restore-keys: |
${{ runner.os }}-pnpm-store-
- name: Install dependencies
run: pnpm install --frozen-lockfile
- name: Lint code
run: pnpm run lint
- name: Run tests
run: pnpm run test
- name: Build package
run: pnpm run build
- name: Determine npm tag
id: npm_tag
run: |
if [ "${{ github.event_name }}" = "release" ]; then
if [[ "${{ github.event.release.prerelease }}" == "true" ]]; then
echo "tag=beta" >> $GITHUB_OUTPUT
else
echo "tag=latest" >> $GITHUB_OUTPUT
fi
elif [ "${{ github.event_name }}" = "workflow_dispatch" ]; then
echo "tag=${{ github.event.inputs.publish_tag }}" >> $GITHUB_OUTPUT
elif [ "${{ github.ref }}" = "refs/heads/develop" ]; then
echo "tag=dev" >> $GITHUB_OUTPUT
elif [ "${{ github.ref }}" = "refs/heads/main" ]; then
echo "tag=latest" >> $GITHUB_OUTPUT
else
echo "tag=dev" >> $GITHUB_OUTPUT
fi
- name: Check if package builds correctly
run: |
if [ ! -f "dist/index.js" ]; then
echo "Build failed - dist/index.js not found"
exit 1
fi
- name: Publish to NPM (dry-run for PRs)
if: github.event_name == 'pull_request'
run: pnpm publish --dry-run --no-git-checks --tag ${{ steps.npm_tag.outputs.tag }}
- name: Publish to NPM
if: github.event_name == 'release' || github.event_name == 'workflow_dispatch' || (github.event_name == 'push' && (github.ref == 'refs/heads/main' || github.ref == 'refs/heads/develop'))
run: |
echo "Publishing with tag: ${{ steps.npm_tag.outputs.tag }}"
pnpm publish --no-git-checks --tag ${{ steps.npm_tag.outputs.tag }}
env:
NODE_AUTH_TOKEN: ${{ secrets.NPM_PUBLISH_TOKEN }}
- name: Create GitHub Release Asset
if: github.event_name == 'release'
run: |
tar -czf mcp-server-crawlab-${{ github.ref_name }}.tar.gz dist/
- name: Upload Release Asset
if: github.event_name == 'release'
uses: actions/upload-release-asset@v1
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
with:
upload_url: ${{ github.event.release.upload_url }}
asset_path: ./crawlab/mcp/mcp-server-crawlab-${{ github.ref_name }}.tar.gz
asset_name: mcp-server-crawlab-${{ github.ref_name }}.tar.gz
asset_content_type: application/gzip

View File

@@ -1,609 +0,0 @@
import { McpServer } from "@modelcontextprotocol/sdk/server/mcp.js";
import { CrawlabClient } from "../client.js";
import { z } from "zod";
const AI_TOOLS = {
// LLM Provider Management
list_llm_providers: "crawlab_list_llm_providers",
get_llm_provider: "crawlab_get_llm_provider",
create_llm_provider: "crawlab_create_llm_provider",
update_llm_provider: "crawlab_update_llm_provider",
delete_llm_provider: "crawlab_delete_llm_provider",
// Chat Conversations
list_conversations: "crawlab_list_conversations",
get_conversation: "crawlab_get_conversation",
create_conversation: "crawlab_create_conversation",
update_conversation: "crawlab_update_conversation",
delete_conversation: "crawlab_delete_conversation",
get_conversation_messages: "crawlab_get_conversation_messages",
get_chat_message: "crawlab_get_chat_message",
// AutoProbe (AI Web Scraping)
list_autoprobes: "crawlab_list_autoprobes",
get_autoprobe: "crawlab_get_autoprobe",
create_autoprobe: "crawlab_create_autoprobe",
update_autoprobe: "crawlab_update_autoprobe",
delete_autoprobe: "crawlab_delete_autoprobe",
run_autoprobe_task: "crawlab_run_autoprobe_task",
get_autoprobe_tasks: "crawlab_get_autoprobe_tasks",
get_autoprobe_preview: "crawlab_get_autoprobe_preview",
get_autoprobe_pattern: "crawlab_get_autoprobe_pattern",
// AutoProbe V2
list_autoprobes_v2: "crawlab_list_autoprobes_v2",
get_autoprobe_v2: "crawlab_get_autoprobe_v2",
create_autoprobe_v2: "crawlab_create_autoprobe_v2",
update_autoprobe_v2: "crawlab_update_autoprobe_v2",
delete_autoprobe_v2: "crawlab_delete_autoprobe_v2",
run_autoprobe_v2_task: "crawlab_run_autoprobe_v2_task",
get_autoprobe_v2_tasks: "crawlab_get_autoprobe_v2_tasks",
get_autoprobe_v2_preview: "crawlab_get_autoprobe_v2_preview",
get_autoprobe_v2_pattern: "crawlab_get_autoprobe_v2_pattern",
get_autoprobe_v2_pattern_results: "crawlab_get_autoprobe_v2_pattern_results",
};
export function configureAITools(server: McpServer, client: CrawlabClient) {
// LLM Provider Management
server.tool(
AI_TOOLS.list_llm_providers,
"List all LLM providers configured in Crawlab",
{
page: z.number().optional().describe("Page number for pagination (default: 1)"),
page_size: z.number().optional().describe("Number of providers per page (default: 10)"),
filter: z.string().optional().describe("Filter providers by name or type"),
},
async (args) => {
try {
const result = await client.getLLMProviders(args);
return {
content: [
{
type: "text",
text: JSON.stringify(result, null, 2),
},
],
};
} catch (error) {
return {
content: [
{
type: "text",
text: `Error listing LLM providers: ${error instanceof Error ? error.message : String(error)}`,
},
],
isError: true,
};
}
}
);
server.tool(
AI_TOOLS.get_llm_provider,
"Get details of a specific LLM provider",
{
id: z.string().describe("ID of the LLM provider"),
},
async ({ id }) => {
try {
const result = await client.getLLMProvider(id);
return {
content: [
{
type: "text",
text: JSON.stringify(result, null, 2),
},
],
};
} catch (error) {
return {
content: [
{
type: "text",
text: `Error getting LLM provider: ${error instanceof Error ? error.message : String(error)}`,
},
],
isError: true,
};
}
}
);
server.tool(
AI_TOOLS.create_llm_provider,
"Create a new LLM provider configuration",
{
name: z.string().describe("Display name for the provider"),
type: z.string().describe("Provider type (e.g., 'openai', 'azure-openai', 'anthropic', 'gemini')"),
api_key: z.string().describe("API key for the provider"),
api_base_url: z.string().optional().describe("Custom API base URL"),
api_version: z.string().optional().describe("API version"),
default_model: z.string().optional().describe("Default model for this provider"),
models: z.array(z.string()).optional().describe("List of supported models"),
deployment_name: z.string().optional().describe("Deployment name (for Azure)"),
},
async (args) => {
try {
const result = await client.createLLMProvider(args);
return {
content: [
{
type: "text",
text: JSON.stringify(result, null, 2),
},
],
};
} catch (error) {
return {
content: [
{
type: "text",
text: `Error creating LLM provider: ${error instanceof Error ? error.message : String(error)}`,
},
],
isError: true,
};
}
}
);
server.tool(
AI_TOOLS.update_llm_provider,
"Update an existing LLM provider configuration",
{
id: z.string().describe("ID of the LLM provider to update"),
name: z.string().optional().describe("Display name for the provider"),
type: z.string().optional().describe("Provider type"),
api_key: z.string().optional().describe("API key for the provider"),
api_base_url: z.string().optional().describe("Custom API base URL"),
api_version: z.string().optional().describe("API version"),
default_model: z.string().optional().describe("Default model for this provider"),
models: z.array(z.string()).optional().describe("List of supported models"),
deployment_name: z.string().optional().describe("Deployment name (for Azure)"),
},
async ({ id, ...updateData }) => {
try {
const result = await client.updateLLMProvider(id, updateData);
return {
content: [
{
type: "text",
text: JSON.stringify(result, null, 2),
},
],
};
} catch (error) {
return {
content: [
{
type: "text",
text: `Error updating LLM provider: ${error instanceof Error ? error.message : String(error)}`,
},
],
isError: true,
};
}
}
);
server.tool(
AI_TOOLS.delete_llm_provider,
"Delete an LLM provider configuration",
{
id: z.string().describe("ID of the LLM provider to delete"),
},
async ({ id }) => {
try {
await client.deleteLLMProvider(id);
return {
content: [
{
type: "text",
text: `LLM provider ${id} deleted successfully`,
},
],
};
} catch (error) {
return {
content: [
{
type: "text",
text: `Error deleting LLM provider: ${error instanceof Error ? error.message : String(error)}`,
},
],
isError: true,
};
}
}
);
// Chat Conversations
server.tool(
AI_TOOLS.list_conversations,
"List all AI chat conversations",
{
page: z.number().optional().describe("Page number for pagination"),
page_size: z.number().optional().describe("Number of conversations per page"),
filter: z.string().optional().describe("Filter conversations by title or content"),
},
async (args) => {
try {
const result = await client.getConversations(args);
return {
content: [
{
type: "text",
text: JSON.stringify(result, null, 2),
},
],
};
} catch (error) {
return {
content: [
{
type: "text",
text: `Error listing conversations: ${error instanceof Error ? error.message : String(error)}`,
},
],
isError: true,
};
}
}
);
server.tool(
AI_TOOLS.get_conversation,
"Get details of a specific conversation",
{
id: z.string().describe("ID of the conversation"),
},
async ({ id }) => {
try {
const result = await client.getConversation(id);
return {
content: [
{
type: "text",
text: JSON.stringify(result, null, 2),
},
],
};
} catch (error) {
return {
content: [
{
type: "text",
text: `Error getting conversation: ${error instanceof Error ? error.message : String(error)}`,
},
],
isError: true,
};
}
}
);
server.tool(
AI_TOOLS.get_conversation_messages,
"Get all messages from a conversation",
{
id: z.string().describe("ID of the conversation"),
},
async ({ id }) => {
try {
const result = await client.getConversationMessages(id);
return {
content: [
{
type: "text",
text: JSON.stringify(result, null, 2),
},
],
};
} catch (error) {
return {
content: [
{
type: "text",
text: `Error getting conversation messages: ${error instanceof Error ? error.message : String(error)}`,
},
],
isError: true,
};
}
}
);
// AutoProbe V2 (Latest)
server.tool(
AI_TOOLS.list_autoprobes_v2,
"List all AutoProbe V2 configurations (AI-powered web scraping)",
{
page: z.number().optional().describe("Page number for pagination"),
page_size: z.number().optional().describe("Number of AutoProbes per page"),
filter: z.string().optional().describe("Filter AutoProbes by name or URL"),
},
async (args) => {
try {
const result = await client.getAutoProbesV2(args);
return {
content: [
{
type: "text",
text: JSON.stringify(result, null, 2),
},
],
};
} catch (error) {
return {
content: [
{
type: "text",
text: `Error listing AutoProbes V2: ${error instanceof Error ? error.message : String(error)}`,
},
],
isError: true,
};
}
}
);
server.tool(
AI_TOOLS.get_autoprobe_v2,
"Get details of a specific AutoProbe V2 configuration",
{
id: z.string().describe("ID of the AutoProbe"),
},
async ({ id }) => {
try {
const result = await client.getAutoProbeV2(id);
return {
content: [
{
type: "text",
text: JSON.stringify(result, null, 2),
},
],
};
} catch (error) {
return {
content: [
{
type: "text",
text: `Error getting AutoProbe V2: ${error instanceof Error ? error.message : String(error)}`,
},
],
isError: true,
};
}
}
);
server.tool(
AI_TOOLS.create_autoprobe_v2,
"Create a new AutoProbe V2 configuration for AI-powered web scraping",
{
name: z.string().describe("Name of the AutoProbe"),
url: z.string().describe("Target URL to scrape"),
description: z.string().optional().describe("Description of what to extract"),
query: z.string().optional().describe("Natural language query describing the data to extract"),
settings: z.object({}).optional().describe("Additional configuration settings"),
},
async (args) => {
try {
const result = await client.createAutoProbeV2(args);
return {
content: [
{
type: "text",
text: JSON.stringify(result, null, 2),
},
],
};
} catch (error) {
return {
content: [
{
type: "text",
text: `Error creating AutoProbe V2: ${error instanceof Error ? error.message : String(error)}`,
},
],
isError: true,
};
}
}
);
server.tool(
AI_TOOLS.run_autoprobe_v2_task,
"Run an AutoProbe V2 scraping task",
{
id: z.string().describe("ID of the AutoProbe"),
query: z.string().optional().describe("Custom query for this run"),
view_port: z.object({}).optional().describe("Custom viewport settings"),
},
async ({ id, ...params }) => {
try {
const result = await client.runAutoProbeV2Task(id, params);
return {
content: [
{
type: "text",
text: JSON.stringify(result, null, 2),
},
],
};
} catch (error) {
return {
content: [
{
type: "text",
text: `Error running AutoProbe V2 task: ${error instanceof Error ? error.message : String(error)}`,
},
],
isError: true,
};
}
}
);
server.tool(
AI_TOOLS.get_autoprobe_v2_preview,
"Get a preview of what an AutoProbe V2 would extract",
{
id: z.string().describe("ID of the AutoProbe"),
},
async ({ id }) => {
try {
const result = await client.getAutoProbeV2Preview(id);
return {
content: [
{
type: "text",
text: JSON.stringify(result, null, 2),
},
],
};
} catch (error) {
return {
content: [
{
type: "text",
text: `Error getting AutoProbe V2 preview: ${error instanceof Error ? error.message : String(error)}`,
},
],
isError: true,
};
}
}
);
server.tool(
AI_TOOLS.get_autoprobe_v2_pattern,
"Get the extraction pattern for an AutoProbe V2",
{
id: z.string().describe("ID of the AutoProbe"),
},
async ({ id }) => {
try {
const result = await client.getAutoProbeV2Pattern(id);
return {
content: [
{
type: "text",
text: JSON.stringify(result, null, 2),
},
],
};
} catch (error) {
return {
content: [
{
type: "text",
text: `Error getting AutoProbe V2 pattern: ${error instanceof Error ? error.message : String(error)}`,
},
],
isError: true,
};
}
}
);
// AutoProbe V1 (Legacy Support)
server.tool(
AI_TOOLS.list_autoprobes,
"List all AutoProbe V1 configurations (legacy)",
{
page: z.number().optional().describe("Page number for pagination"),
page_size: z.number().optional().describe("Number of AutoProbes per page"),
filter: z.string().optional().describe("Filter AutoProbes by name or URL"),
},
async (args) => {
try {
const result = await client.getAutoProbes(args);
return {
content: [
{
type: "text",
text: JSON.stringify(result, null, 2),
},
],
};
} catch (error) {
return {
content: [
{
type: "text",
text: `Error listing AutoProbes V1: ${error instanceof Error ? error.message : String(error)}`,
},
],
isError: true,
};
}
}
);
server.tool(
AI_TOOLS.get_autoprobe,
"Get details of a specific AutoProbe V1 configuration",
{
id: z.string().describe("ID of the AutoProbe"),
},
async ({ id }) => {
try {
const result = await client.getAutoProbe(id);
return {
content: [
{
type: "text",
text: JSON.stringify(result, null, 2),
},
],
};
} catch (error) {
return {
content: [
{
type: "text",
text: `Error getting AutoProbe V1: ${error instanceof Error ? error.message : String(error)}`,
},
],
isError: true,
};
}
}
);
server.tool(
AI_TOOLS.create_autoprobe,
"Create a new AutoProbe V1 configuration (legacy)",
{
name: z.string().describe("Name of the AutoProbe"),
url: z.string().describe("Target URL to scrape"),
description: z.string().optional().describe("Description of what to extract"),
query: z.string().optional().describe("Natural language query describing the data to extract"),
},
async (args) => {
try {
const result = await client.createAutoProbe(args);
return {
content: [
{
type: "text",
text: JSON.stringify(result, null, 2),
},
],
};
} catch (error) {
return {
content: [
{
type: "text",
text: `Error creating AutoProbe V1: ${error instanceof Error ? error.message : String(error)}`,
},
],
isError: true,
};
}
}
);
}