mirror of
https://github.com/mtayfur/openwebui-memory-system.git
synced 2026-01-22 06:51:01 +01:00
refactor(memory_system): remove excessive try/except and input validation, streamline async operations, and add skip state cache
Removes redundant try/except blocks and input validation in several methods to simplify logic and improve readability. Moves error handling to higher levels where appropriate. Adds a skip state cache to track when memory operations should be skipped, improving efficiency by avoiding repeated skip checks. Cleans up batch operation execution and cache clearing to include the new skip state. These changes reduce unnecessary code complexity and improve maintainability, while also optimizing memory operation flow and cache management.
This commit is contained in:
289
memory_system.py
289
memory_system.py
@@ -254,6 +254,7 @@ class UnifiedCacheManager:
|
|||||||
self.EMBEDDING_CACHE = "embedding"
|
self.EMBEDDING_CACHE = "embedding"
|
||||||
self.RETRIEVAL_CACHE = "retrieval"
|
self.RETRIEVAL_CACHE = "retrieval"
|
||||||
self.MEMORY_CACHE = "memory"
|
self.MEMORY_CACHE = "memory"
|
||||||
|
self.SKIP_STATE_CACHE = "skip"
|
||||||
|
|
||||||
async def get(self, user_id: str, cache_type: str, key: str) -> Optional[Any]:
|
async def get(self, user_id: str, cache_type: str, key: str) -> Optional[Any]:
|
||||||
"""Get value from cache with LRU updates."""
|
"""Get value from cache with LRU updates."""
|
||||||
@@ -747,25 +748,20 @@ class LLMConsolidationService:
|
|||||||
if not existing_memories:
|
if not existing_memories:
|
||||||
return None
|
return None
|
||||||
|
|
||||||
try:
|
content_embedding = await self.memory_system._generate_embeddings(content, user_id)
|
||||||
content_embedding = await self.memory_system._generate_embeddings(content, user_id)
|
|
||||||
|
|
||||||
for memory in existing_memories:
|
for memory in existing_memories:
|
||||||
if not memory.content or len(memory.content.strip()) < Constants.MIN_MESSAGE_CHARS:
|
if not memory.content or len(memory.content.strip()) < Constants.MIN_MESSAGE_CHARS:
|
||||||
continue
|
continue
|
||||||
|
|
||||||
memory_embedding = await self.memory_system._generate_embeddings(memory.content, user_id)
|
memory_embedding = await self.memory_system._generate_embeddings(memory.content, user_id)
|
||||||
|
similarity = float(np.dot(content_embedding, memory_embedding))
|
||||||
|
|
||||||
similarity = float(np.dot(content_embedding, memory_embedding))
|
if similarity >= Constants.DEDUPLICATION_SIMILARITY_THRESHOLD:
|
||||||
|
logger.info(f"🔍 Semantic duplicate detected: similarity={similarity:.3f} with memory {memory.id}")
|
||||||
|
return str(memory.id)
|
||||||
|
|
||||||
if similarity >= Constants.DEDUPLICATION_SIMILARITY_THRESHOLD:
|
return None
|
||||||
logger.info(f"🔍 Semantic duplicate detected: similarity={similarity:.3f} with memory {memory.id}")
|
|
||||||
return str(memory.id)
|
|
||||||
|
|
||||||
return None
|
|
||||||
except Exception as e:
|
|
||||||
logger.warning(f"⚠️ Semantic duplicate check failed: {str(e)}")
|
|
||||||
return None
|
|
||||||
|
|
||||||
def _filter_consolidation_candidates(self, similarities: List[Dict[str, Any]]) -> Tuple[List[Dict[str, Any]], str]:
|
def _filter_consolidation_candidates(self, similarities: List[Dict[str, Any]]) -> Tuple[List[Dict[str, Any]], str]:
|
||||||
"""Filter consolidation candidates by threshold and return candidates with threshold info."""
|
"""Filter consolidation candidates by threshold and return candidates with threshold info."""
|
||||||
@@ -945,21 +941,13 @@ class LLMConsolidationService:
|
|||||||
|
|
||||||
async def execute_memory_operations(self, operations: List[Dict[str, Any]], user_id: str, emitter: Optional[Callable] = None) -> Tuple[int, int, int, int]:
|
async def execute_memory_operations(self, operations: List[Dict[str, Any]], user_id: str, emitter: Optional[Callable] = None) -> Tuple[int, int, int, int]:
|
||||||
"""Execute consolidation operations with simplified tracking."""
|
"""Execute consolidation operations with simplified tracking."""
|
||||||
if not operations or not user_id:
|
if not operations:
|
||||||
return 0, 0, 0, 0
|
return 0, 0, 0, 0
|
||||||
|
|
||||||
try:
|
user = await asyncio.wait_for(
|
||||||
user = await asyncio.wait_for(
|
asyncio.to_thread(Users.get_user_by_id, user_id),
|
||||||
asyncio.to_thread(Users.get_user_by_id, user_id),
|
timeout=Constants.DATABASE_OPERATION_TIMEOUT_SEC,
|
||||||
timeout=Constants.DATABASE_OPERATION_TIMEOUT_SEC,
|
)
|
||||||
)
|
|
||||||
except asyncio.TimeoutError:
|
|
||||||
raise TimeoutError(f"⏱️ User lookup timed out after {Constants.DATABASE_OPERATION_TIMEOUT_SEC}s")
|
|
||||||
except Exception as e:
|
|
||||||
raise RuntimeError(f"👤 User lookup failed: {str(e)}")
|
|
||||||
|
|
||||||
if not user:
|
|
||||||
raise ValueError(f"👤 User not found for consolidation: {user_id}")
|
|
||||||
|
|
||||||
created_count = updated_count = deleted_count = failed_count = 0
|
created_count = updated_count = deleted_count = failed_count = 0
|
||||||
|
|
||||||
@@ -982,28 +970,21 @@ class LLMConsolidationService:
|
|||||||
|
|
||||||
memory_contents_for_deletion = {}
|
memory_contents_for_deletion = {}
|
||||||
if operations_by_type["DELETE"]:
|
if operations_by_type["DELETE"]:
|
||||||
try:
|
user_memories = await self.memory_system._get_user_memories(user_id)
|
||||||
user_memories = await self.memory_system._get_user_memories(user_id)
|
memory_contents_for_deletion = {str(mem.id): mem.content for mem in user_memories}
|
||||||
memory_contents_for_deletion = {str(mem.id): mem.content for mem in user_memories}
|
|
||||||
except Exception as e:
|
|
||||||
logger.warning(f"⚠️ Failed to fetch memories for DELETE preview: {str(e)}")
|
|
||||||
|
|
||||||
if operations_by_type["CREATE"] or operations_by_type["UPDATE"]:
|
if operations_by_type["CREATE"] or operations_by_type["UPDATE"]:
|
||||||
try:
|
current_memories = await self.memory_system._get_user_memories(user_id)
|
||||||
current_memories = await self.memory_system._get_user_memories(user_id)
|
|
||||||
|
|
||||||
if operations_by_type["CREATE"]:
|
if operations_by_type["CREATE"]:
|
||||||
operations_by_type["CREATE"] = await self._deduplicate_operations(
|
operations_by_type["CREATE"] = await self._deduplicate_operations(
|
||||||
operations_by_type["CREATE"], current_memories, user_id, operation_type="CREATE"
|
operations_by_type["CREATE"], current_memories, user_id, operation_type="CREATE"
|
||||||
)
|
)
|
||||||
|
|
||||||
if operations_by_type["UPDATE"]:
|
if operations_by_type["UPDATE"]:
|
||||||
operations_by_type["UPDATE"] = await self._deduplicate_operations(
|
operations_by_type["UPDATE"] = await self._deduplicate_operations(
|
||||||
operations_by_type["UPDATE"], current_memories, user_id, operation_type="UPDATE", delete_operations=operations_by_type["DELETE"]
|
operations_by_type["UPDATE"], current_memories, user_id, operation_type="UPDATE", delete_operations=operations_by_type["DELETE"]
|
||||||
)
|
)
|
||||||
|
|
||||||
except Exception as e:
|
|
||||||
logger.warning(f"⚠️ Semantic deduplication check failed, proceeding with original operations: {str(e)}")
|
|
||||||
|
|
||||||
for operation_type, ops in operations_by_type.items():
|
for operation_type, ops in operations_by_type.items():
|
||||||
if not ops:
|
if not ops:
|
||||||
@@ -1014,38 +995,33 @@ class LLMConsolidationService:
|
|||||||
task = self.memory_system._execute_single_operation(operation, user)
|
task = self.memory_system._execute_single_operation(operation, user)
|
||||||
batch_tasks.append(task)
|
batch_tasks.append(task)
|
||||||
|
|
||||||
try:
|
results = await asyncio.gather(*batch_tasks, return_exceptions=True)
|
||||||
results = await asyncio.gather(*batch_tasks, return_exceptions=True)
|
for idx, result in enumerate(results):
|
||||||
for idx, result in enumerate(results):
|
operation = ops[idx]
|
||||||
operation = ops[idx]
|
|
||||||
|
|
||||||
if isinstance(result, Exception):
|
if isinstance(result, Exception):
|
||||||
failed_count += 1
|
failed_count += 1
|
||||||
await self.memory_system._emit_status(emitter, f"❌ Failed {operation_type}", done=False)
|
await self.memory_system._emit_status(emitter, f"❌ Failed {operation_type}", done=False)
|
||||||
elif result == Models.MemoryOperationType.CREATE.value:
|
elif result == Models.MemoryOperationType.CREATE.value:
|
||||||
created_count += 1
|
created_count += 1
|
||||||
content_preview = self.memory_system._truncate_content(operation.content)
|
content_preview = self.memory_system._truncate_content(operation.content)
|
||||||
await self.memory_system._emit_status(emitter, f"📝 Created: {content_preview}", done=False)
|
await self.memory_system._emit_status(emitter, f"📝 Created: {content_preview}", done=False)
|
||||||
elif result == Models.MemoryOperationType.UPDATE.value:
|
elif result == Models.MemoryOperationType.UPDATE.value:
|
||||||
updated_count += 1
|
updated_count += 1
|
||||||
content_preview = self.memory_system._truncate_content(operation.content)
|
content_preview = self.memory_system._truncate_content(operation.content)
|
||||||
await self.memory_system._emit_status(emitter, f"✏️ Updated: {content_preview}", done=False)
|
await self.memory_system._emit_status(emitter, f"✏️ Updated: {content_preview}", done=False)
|
||||||
elif result == Models.MemoryOperationType.DELETE.value:
|
elif result == Models.MemoryOperationType.DELETE.value:
|
||||||
deleted_count += 1
|
deleted_count += 1
|
||||||
content_preview = memory_contents_for_deletion.get(operation.id, operation.id)
|
content_preview = memory_contents_for_deletion.get(operation.id, operation.id)
|
||||||
if content_preview and content_preview != operation.id:
|
if content_preview and content_preview != operation.id:
|
||||||
content_preview = self.memory_system._truncate_content(content_preview)
|
content_preview = self.memory_system._truncate_content(content_preview)
|
||||||
await self.memory_system._emit_status(emitter, f"🗑️ Deleted: {content_preview}", done=False)
|
await self.memory_system._emit_status(emitter, f"🗑️ Deleted: {content_preview}", done=False)
|
||||||
elif result in [
|
elif result in [
|
||||||
Models.OperationResult.FAILED.value,
|
Models.OperationResult.FAILED.value,
|
||||||
Models.OperationResult.UNSUPPORTED.value,
|
Models.OperationResult.UNSUPPORTED.value,
|
||||||
]:
|
]:
|
||||||
failed_count += 1
|
failed_count += 1
|
||||||
await self.memory_system._emit_status(emitter, f"❌ Failed {operation_type}", done=False)
|
await self.memory_system._emit_status(emitter, f"❌ Failed {operation_type}", done=False)
|
||||||
except Exception as e:
|
|
||||||
failed_count += len(ops)
|
|
||||||
logger.error(f"❌ Batch {operation_type} operations failed during memory consolidation: {str(e)}")
|
|
||||||
await self.memory_system._emit_status(emitter, f"❌ Batch {operation_type} Failed", done=False)
|
|
||||||
|
|
||||||
total_executed = created_count + updated_count + deleted_count
|
total_executed = created_count + updated_count + deleted_count
|
||||||
logger.info(
|
logger.info(
|
||||||
@@ -1296,17 +1272,9 @@ class Filter:
|
|||||||
|
|
||||||
async def _generate_embeddings(self, texts: Union[str, List[str]], user_id: str) -> Union[np.ndarray, List[np.ndarray]]:
|
async def _generate_embeddings(self, texts: Union[str, List[str]], user_id: str) -> Union[np.ndarray, List[np.ndarray]]:
|
||||||
"""Unified embedding generation for single text or batch with optimized caching using OpenWebUI's embedding function."""
|
"""Unified embedding generation for single text or batch with optimized caching using OpenWebUI's embedding function."""
|
||||||
if self._embedding_function is None:
|
|
||||||
raise RuntimeError("🤖 Embedding function not initialized. Ensure pipeline context is set.")
|
|
||||||
|
|
||||||
is_single = isinstance(texts, str)
|
is_single = isinstance(texts, str)
|
||||||
text_list = [texts] if is_single else texts
|
text_list = [texts] if is_single else texts
|
||||||
|
|
||||||
if not text_list:
|
|
||||||
if is_single:
|
|
||||||
raise ValueError("📏 Empty text provided for embedding generation")
|
|
||||||
return []
|
|
||||||
|
|
||||||
result_embeddings = []
|
result_embeddings = []
|
||||||
uncached_texts = []
|
uncached_texts = []
|
||||||
uncached_indices = []
|
uncached_indices = []
|
||||||
@@ -1360,9 +1328,6 @@ class Filter:
|
|||||||
return result_embeddings
|
return result_embeddings
|
||||||
|
|
||||||
def _should_skip_memory_operations(self, user_message: str) -> Tuple[bool, str]:
|
def _should_skip_memory_operations(self, user_message: str) -> Tuple[bool, str]:
|
||||||
if self._skip_detector is None:
|
|
||||||
raise RuntimeError("🤖 Skip detector not initialized")
|
|
||||||
|
|
||||||
skip_reason = self._skip_detector.detect_skip_reason(user_message, self.valves.max_message_chars, memory_system=self)
|
skip_reason = self._skip_detector.detect_skip_reason(user_message, self.valves.max_message_chars, memory_system=self)
|
||||||
if skip_reason:
|
if skip_reason:
|
||||||
status_key = SkipDetector.SkipReason(skip_reason)
|
status_key = SkipDetector.SkipReason(skip_reason)
|
||||||
@@ -1371,13 +1336,6 @@ class Filter:
|
|||||||
|
|
||||||
def _process_user_message(self, body: Dict[str, Any]) -> Tuple[Optional[str], bool, str]:
|
def _process_user_message(self, body: Dict[str, Any]) -> Tuple[Optional[str], bool, str]:
|
||||||
"""Extract user message and determine if memory operations should be skipped."""
|
"""Extract user message and determine if memory operations should be skipped."""
|
||||||
if not body or "messages" not in body or not isinstance(body["messages"], list):
|
|
||||||
return (
|
|
||||||
None,
|
|
||||||
True,
|
|
||||||
SkipDetector.STATUS_MESSAGES[SkipDetector.SkipReason.SKIP_SIZE],
|
|
||||||
)
|
|
||||||
|
|
||||||
messages = body["messages"]
|
messages = body["messages"]
|
||||||
user_message = None
|
user_message = None
|
||||||
|
|
||||||
@@ -1421,10 +1379,6 @@ class Filter:
|
|||||||
return
|
return
|
||||||
|
|
||||||
scores = [memory["relevance"] for memory in memories]
|
scores = [memory["relevance"] for memory in memories]
|
||||||
|
|
||||||
if not scores:
|
|
||||||
return
|
|
||||||
|
|
||||||
top_score = max(scores)
|
top_score = max(scores)
|
||||||
lowest_score = min(scores)
|
lowest_score = min(scores)
|
||||||
median_score = statistics.median(scores)
|
median_score = statistics.median(scores)
|
||||||
@@ -1485,13 +1439,9 @@ class Filter:
|
|||||||
return
|
return
|
||||||
|
|
||||||
payload = {"type": "status", "data": {"description": description, "done": done}}
|
payload = {"type": "status", "data": {"description": description, "done": done}}
|
||||||
|
result = emitter(payload)
|
||||||
try:
|
if asyncio.iscoroutine(result):
|
||||||
result = emitter(payload)
|
await result
|
||||||
if asyncio.iscoroutine(result):
|
|
||||||
await result
|
|
||||||
except Exception:
|
|
||||||
pass
|
|
||||||
|
|
||||||
async def _retrieve_relevant_memories(
|
async def _retrieve_relevant_memories(
|
||||||
self,
|
self,
|
||||||
@@ -1549,10 +1499,6 @@ class Filter:
|
|||||||
emitter: Optional[Callable] = None,
|
emitter: Optional[Callable] = None,
|
||||||
) -> None:
|
) -> None:
|
||||||
"""Add memory context to request body with simplified logic."""
|
"""Add memory context to request body with simplified logic."""
|
||||||
if not body or "messages" not in body or not body["messages"]:
|
|
||||||
logger.warning("⚠️ Invalid request body or no messages found")
|
|
||||||
return
|
|
||||||
|
|
||||||
content_parts = [f"Current Date/Time: {self.format_current_datetime()}"]
|
content_parts = [f"Current Date/Time: {self.format_current_datetime()}"]
|
||||||
|
|
||||||
memory_count = 0
|
memory_count = 0
|
||||||
@@ -1610,26 +1556,16 @@ class Filter:
|
|||||||
memory_contents = [memory.content for memory in user_memories]
|
memory_contents = [memory.content for memory in user_memories]
|
||||||
memory_embeddings = await self._generate_embeddings(memory_contents, user_id)
|
memory_embeddings = await self._generate_embeddings(memory_contents, user_id)
|
||||||
|
|
||||||
if len(memory_embeddings) != len(user_memories):
|
|
||||||
logger.error(f"🔢 Embedding generation failed: generated {len(memory_embeddings)} embeddings but expected {len(user_memories)} for user memories")
|
|
||||||
return [], self.valves.semantic_retrieval_threshold, []
|
|
||||||
|
|
||||||
similarity_scores = []
|
|
||||||
memory_data = []
|
memory_data = []
|
||||||
|
|
||||||
for memory_index, memory in enumerate(user_memories):
|
for memory_index, memory in enumerate(user_memories):
|
||||||
memory_embedding = memory_embeddings[memory_index]
|
memory_embedding = memory_embeddings[memory_index]
|
||||||
if memory_embedding is None:
|
if memory_embedding is None:
|
||||||
continue
|
continue
|
||||||
|
|
||||||
similarity = float(np.dot(query_embedding, memory_embedding))
|
similarity = float(np.dot(query_embedding, memory_embedding))
|
||||||
similarity_scores.append(similarity)
|
|
||||||
memory_dict = self._build_memory_dict(memory, similarity)
|
memory_dict = self._build_memory_dict(memory, similarity)
|
||||||
memory_data.append(memory_dict)
|
memory_data.append(memory_dict)
|
||||||
|
|
||||||
if not similarity_scores:
|
|
||||||
return [], self.valves.semantic_retrieval_threshold, []
|
|
||||||
|
|
||||||
memory_data.sort(key=lambda x: x["relevance"], reverse=True)
|
memory_data.sort(key=lambda x: x["relevance"], reverse=True)
|
||||||
|
|
||||||
threshold = self.valves.semantic_retrieval_threshold
|
threshold = self.valves.semantic_retrieval_threshold
|
||||||
@@ -1657,10 +1593,19 @@ class Filter:
|
|||||||
return body
|
return body
|
||||||
|
|
||||||
user_message, should_skip, skip_reason = self._process_user_message(body)
|
user_message, should_skip, skip_reason = self._process_user_message(body)
|
||||||
|
|
||||||
if not user_message or should_skip:
|
if not user_message or should_skip:
|
||||||
if __event_emitter__ and skip_reason:
|
if __event_emitter__ and skip_reason:
|
||||||
await self._emit_status(__event_emitter__, skip_reason, done=True)
|
await self._emit_status(__event_emitter__, skip_reason, done=True)
|
||||||
await self._add_memory_context(body, [], user_id, __event_emitter__)
|
await self._add_memory_context(body, [], user_id, __event_emitter__)
|
||||||
|
|
||||||
|
skip_cache_key = self._cache_key(self._cache_manager.SKIP_STATE_CACHE, user_id, user_message or "")
|
||||||
|
await self._cache_manager.put(
|
||||||
|
user_id,
|
||||||
|
self._cache_manager.SKIP_STATE_CACHE,
|
||||||
|
skip_cache_key,
|
||||||
|
True,
|
||||||
|
)
|
||||||
return body
|
return body
|
||||||
try:
|
try:
|
||||||
memory_cache_key = self._cache_key(self._cache_manager.MEMORY_CACHE, user_id)
|
memory_cache_key = self._cache_key(self._cache_manager.MEMORY_CACHE, user_id)
|
||||||
@@ -1709,11 +1654,20 @@ class Filter:
|
|||||||
user_id = __user__.get("id") if body and __user__ else None
|
user_id = __user__.get("id") if body and __user__ else None
|
||||||
if not user_id:
|
if not user_id:
|
||||||
return body
|
return body
|
||||||
user_message, should_skip, skip_reason = self._process_user_message(body)
|
|
||||||
if not user_message or should_skip:
|
user_message, _, _ = self._process_user_message(body)
|
||||||
|
if not user_message:
|
||||||
return body
|
return body
|
||||||
cache_key = self._cache_key(self._cache_manager.RETRIEVAL_CACHE, user_id, user_message)
|
|
||||||
cached_similarities = await self._cache_manager.get(user_id, self._cache_manager.RETRIEVAL_CACHE, cache_key)
|
skip_cache_key = self._cache_key(self._cache_manager.SKIP_STATE_CACHE, user_id, user_message)
|
||||||
|
should_skip = await self._cache_manager.get(user_id, self._cache_manager.SKIP_STATE_CACHE, skip_cache_key)
|
||||||
|
|
||||||
|
if should_skip:
|
||||||
|
logger.info("⏭️ Skipping outlet consolidation: inlet already detected skip condition")
|
||||||
|
return body
|
||||||
|
|
||||||
|
retrieval_cache_key = self._cache_key(self._cache_manager.RETRIEVAL_CACHE, user_id, user_message)
|
||||||
|
cached_similarities = await self._cache_manager.get(user_id, self._cache_manager.RETRIEVAL_CACHE, retrieval_cache_key)
|
||||||
task = asyncio.create_task(self._llm_consolidation_service.run_consolidation_pipeline(user_message, user_id, __event_emitter__, cached_similarities))
|
task = asyncio.create_task(self._llm_consolidation_service.run_consolidation_pipeline(user_message, user_id, __event_emitter__, cached_similarities))
|
||||||
self._background_tasks.add(task)
|
self._background_tasks.add(task)
|
||||||
|
|
||||||
@@ -1745,7 +1699,10 @@ class Filter:
|
|||||||
try:
|
try:
|
||||||
retrieval_cleared = await self._cache_manager.clear_user_cache(user_id, self._cache_manager.RETRIEVAL_CACHE)
|
retrieval_cleared = await self._cache_manager.clear_user_cache(user_id, self._cache_manager.RETRIEVAL_CACHE)
|
||||||
embedding_cleared = await self._cache_manager.clear_user_cache(user_id, self._cache_manager.EMBEDDING_CACHE)
|
embedding_cleared = await self._cache_manager.clear_user_cache(user_id, self._cache_manager.EMBEDDING_CACHE)
|
||||||
logger.info(f"🔄 Cleared {retrieval_cleared} retrieval + {embedding_cleared} embedding cache entries for user {user_id}")
|
skip_state_cleared = await self._cache_manager.clear_user_cache(user_id, self._cache_manager.SKIP_STATE_CACHE)
|
||||||
|
logger.info(
|
||||||
|
f"🔄 Cleared {retrieval_cleared} retrieval + {embedding_cleared} embedding + {skip_state_cleared} skip state cache entries for user {user_id}"
|
||||||
|
)
|
||||||
|
|
||||||
user_memories = await self._get_user_memories(user_id)
|
user_memories = await self._get_user_memories(user_id)
|
||||||
memory_cache_key = self._cache_key(self._cache_manager.MEMORY_CACHE, user_id)
|
memory_cache_key = self._cache_key(self._cache_manager.MEMORY_CACHE, user_id)
|
||||||
@@ -1774,59 +1731,49 @@ class Filter:
|
|||||||
|
|
||||||
async def _execute_single_operation(self, operation: Models.MemoryOperation, user: Any) -> str:
|
async def _execute_single_operation(self, operation: Models.MemoryOperation, user: Any) -> str:
|
||||||
"""Execute a single memory operation."""
|
"""Execute a single memory operation."""
|
||||||
try:
|
if operation.operation == Models.MemoryOperationType.CREATE:
|
||||||
if operation.operation == Models.MemoryOperationType.CREATE:
|
content_stripped = operation.content.strip()
|
||||||
content_stripped = operation.content.strip()
|
if not content_stripped:
|
||||||
if not content_stripped:
|
return Models.OperationResult.SKIPPED_EMPTY_CONTENT.value
|
||||||
logger.warning(f"⚠️ Skipping CREATE operation: empty content")
|
|
||||||
return Models.OperationResult.SKIPPED_EMPTY_CONTENT.value
|
|
||||||
|
|
||||||
await asyncio.wait_for(
|
await asyncio.wait_for(
|
||||||
asyncio.to_thread(Memories.insert_new_memory, user.id, content_stripped),
|
asyncio.to_thread(Memories.insert_new_memory, user.id, content_stripped),
|
||||||
timeout=Constants.DATABASE_OPERATION_TIMEOUT_SEC,
|
timeout=Constants.DATABASE_OPERATION_TIMEOUT_SEC,
|
||||||
)
|
)
|
||||||
return Models.MemoryOperationType.CREATE.value
|
return Models.MemoryOperationType.CREATE.value
|
||||||
|
|
||||||
elif operation.operation == Models.MemoryOperationType.UPDATE:
|
elif operation.operation == Models.MemoryOperationType.UPDATE:
|
||||||
id_stripped = operation.id.strip()
|
id_stripped = operation.id.strip()
|
||||||
if not id_stripped:
|
if not id_stripped:
|
||||||
logger.warning(f"⚠️ Skipping UPDATE operation: empty ID")
|
return Models.OperationResult.SKIPPED_EMPTY_ID.value
|
||||||
return Models.OperationResult.SKIPPED_EMPTY_ID.value
|
|
||||||
|
|
||||||
content_stripped = operation.content.strip()
|
content_stripped = operation.content.strip()
|
||||||
if not content_stripped:
|
if not content_stripped:
|
||||||
logger.warning(f"⚠️ Skipping UPDATE operation for {id_stripped}: empty content")
|
return Models.OperationResult.SKIPPED_EMPTY_CONTENT.value
|
||||||
return Models.OperationResult.SKIPPED_EMPTY_CONTENT.value
|
|
||||||
|
|
||||||
await asyncio.wait_for(
|
await asyncio.wait_for(
|
||||||
asyncio.to_thread(
|
asyncio.to_thread(
|
||||||
Memories.update_memory_by_id_and_user_id,
|
Memories.update_memory_by_id_and_user_id,
|
||||||
id_stripped,
|
id_stripped,
|
||||||
user.id,
|
user.id,
|
||||||
content_stripped,
|
content_stripped,
|
||||||
),
|
),
|
||||||
timeout=Constants.DATABASE_OPERATION_TIMEOUT_SEC,
|
timeout=Constants.DATABASE_OPERATION_TIMEOUT_SEC,
|
||||||
)
|
)
|
||||||
return Models.MemoryOperationType.UPDATE.value
|
return Models.MemoryOperationType.UPDATE.value
|
||||||
|
|
||||||
elif operation.operation == Models.MemoryOperationType.DELETE:
|
elif operation.operation == Models.MemoryOperationType.DELETE:
|
||||||
id_stripped = operation.id.strip()
|
id_stripped = operation.id.strip()
|
||||||
if not id_stripped:
|
if not id_stripped:
|
||||||
logger.warning(f"⚠️ Skipping DELETE operation: empty ID")
|
return Models.OperationResult.SKIPPED_EMPTY_ID.value
|
||||||
return Models.OperationResult.SKIPPED_EMPTY_ID.value
|
|
||||||
|
|
||||||
await asyncio.wait_for(
|
await asyncio.wait_for(
|
||||||
asyncio.to_thread(Memories.delete_memory_by_id_and_user_id, id_stripped, user.id),
|
asyncio.to_thread(Memories.delete_memory_by_id_and_user_id, id_stripped, user.id),
|
||||||
timeout=Constants.DATABASE_OPERATION_TIMEOUT_SEC,
|
timeout=Constants.DATABASE_OPERATION_TIMEOUT_SEC,
|
||||||
)
|
)
|
||||||
return Models.MemoryOperationType.DELETE.value
|
return Models.MemoryOperationType.DELETE.value
|
||||||
else:
|
|
||||||
logger.error(f"❓ Unsupported operation: {operation}")
|
|
||||||
return Models.OperationResult.UNSUPPORTED.value
|
|
||||||
|
|
||||||
except Exception as e:
|
return Models.OperationResult.UNSUPPORTED.value
|
||||||
logger.error(f"💾 Database operation failed for {operation.operation.value}: {str(e)}")
|
|
||||||
return Models.OperationResult.FAILED.value
|
|
||||||
|
|
||||||
def _remove_refs_from_schema(self, schema: Dict[str, Any], schema_defs: Optional[Dict[str, Any]] = None) -> Dict[str, Any]:
|
def _remove_refs_from_schema(self, schema: Dict[str, Any], schema_defs: Optional[Dict[str, Any]] = None) -> Dict[str, Any]:
|
||||||
"""Remove $ref references and ensure required fields for Azure OpenAI."""
|
"""Remove $ref references and ensure required fields for Azure OpenAI."""
|
||||||
|
|||||||
Reference in New Issue
Block a user